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A Comparative Study by Numerical Solutions of
Volterra Integral Equations Using Legendre,

Laguerre and Hermite Polynomials

Md. Mijanoor Rahmanl

Abstract: In this pspq, a method is presented for solving of linear Volterra

integral equations (WE) of both fi.rst and second kind including Abel's integral
equation by applying a very simple and fficient Gslerkin weighted residual

method using Legmdre, Laguerre and Hermite polynomials. Some errors of an

apprortmate solution are compared to the exsct solution by asing these

poll,nomials considering numerical uamples of Volteta integral equations to
this paper.

Kq,words: Volterra equation; Legendre, Lagaerre and Hermite

1. Introduction

Many researchers were solved numerically of some linear and nonlinear integral
equation of both first and second kinds by Mandal and Bhattacharya[L11 using
Bernstein polynomials. For finding approximate solutions of Volterra integral
equations were also presented by Maleknejad et al [4] using Bernstein's
approximation and Changqing Yang et al [lj using Laplace transform. By using
Hermite and Chebyshev Polynomials, Rahman and Islam [2] were compared to
approximate solutions of Volterra integral equations. Shahsavaran[5] obtained
numerical solution of Volterra integral equations by Collocation Method using
Block-Pulse Functions and Taylor Expansion.

Five illustrative examples of linear and nonlinear Volterra integral equations have
been solving numerically by the technique of very well-known Galerkin method
using Legen&e, Laguerre and Hermite piecewise polynomials which are in the
basis trial. function. Finally I have compared to errors of approximate solutions of
VIE by accuracy and efficiency.

2. The Polynomial Bases

2. 1. kgendre Polynomials: The general form of the Legendre polynomials [3] of
nth degree is defined by
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2.2 Laguerr e P oipomi als :

The general form of the Laguerre pollnomials [9] of nth degree is defined by

Ji ( -l )'' n'L.,r.r)=)' '."' .Y'.........(2)
,1, )"tt.')1 (n rl.'

2.3 Hermite Pollnomials: The general form of the Hermite poilnomials [2] of nth

degree is defined by
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3. The General Method:

In this section, first I consider the linear volterra integral equation (viE) of the

first kind t1l-t51, given by

f'x(x,t)u(t1dt = J (r), al xlb ................ (4)

where u(x) is the unknown function, to be determined, K(x,t) is the kernel

function, continuous or discontinuous f (x)beilr.g the known function

satis$,ing/'(a)=0.

Now I use the technique of Galerkin method, [12], to hnd an approxinrate

solution 7(x/ of (a). For this, I assume that

n

i( r) :\c,N i( x ) .. (5)
i=0

where 1y',(-t)are Legendre, Laguerre and Hermite polynomials of degree I

defined in equation (1-3), c, are unknown parameters, to be determined and n

is the number of piecewise pollnomials. An approximate solution i(x) wlll
not produce an identically zefo function but a function called the residuai

function. Substituting (5) into (4), I get the residual function as,

il -,
Rqxl=F", l',<f x.t)N,(t)dt-.f (*), alxlb ......".. (6)

)n
i=0
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Now the Galerkin equations of (4) corresponding to the approximation (5), given
by

fa1*yv,ftM* =0 .... . . (7)

Using (6) and (7) after minor simplification, I obtain

JL nhf nx -l 
rx

L, ))ll.rr.r.t )N,t t ril 
)N 

,r x tdx = )oN,,* tf t x tdx, j =0,t.2,3....n

(8)

The above equations (8) are equivalent to the matrix form

DC =B (9)

where the elements of the matrix C,D and B are ald c,,d,,., and 6, respectively,

given by

ci =k t,c.,c J.c.t.... . ....r,f'

rbfl I,,, = J,l),K( x.t )N i( r tu | ir x tdx. i.i = 0.1.2.3.......n

t, =f N,{x)f(xNx,i =0,1,2,3,....n

Now the unknown parameters c, are determined by solving the system of
equations (10) and substituting these vaiues of parameters in (5), I get the
approximate solution i( x ) of the integral equation (4).

Now I consider the linear Volterra integral equation (VIE) of the second kind [1]
- [5] given by

u(r)+AfK(x,t)u(tpt= f(x), alxlb ........... ..(11)

where u(x) is the unknown function to be determined, K(x,t) is the kernel

function, continuous or discontinuous, f ( x) being the known function and )"

is the constant. Then applyrng the same procedure as described above, I obtain
the matrix form

DC=B . (12)

where the elements of the matrix C,D and B are atd cr,dr,,and 6rrespectively,

given by

,, = 1r,," r," r," r,........ -., n7'

t

l
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a,, = !)lfrr x,t ) N l t Nty i ( x )dx, i, i = 0,1,2,3'. -.... n

t, =f N,{x)f(xNx,i =0,1,2,3,....n (13)

Now the unknown parameters c, are determined by solving the system of

equations (13) and substituting these values of parameters in (5), I get the

approximate solution 7(x) of the integral equation (11)'

The absolute eror for this formulation is defined by, Absolute

Error=lu(x)-i(x)1. The formulation for linear integral equation will be

discussed by considering numerical problems in the next section'

4. trlustrative ExamPles

Here, I am giving some examples of VIE for finding the approximate solution

using above-meniioned methods, which include one first kind and four second

kindlinear Volterra integral equations with three regular kernels, one convolution

kernel and one weakly singular kemel.

4. I Example 1: Consider the volterra integral equation with a convolution kernel

ofthe first kind [8]

l-Cos1 x -t 1u6t )dt = xSin(x), 0 3 x < t ....... . (14)
JO

the exact solution is u(x)= 2Sin(x)

Results have been shown in Table lfor n:10 using the aforementioned three

polynomial bases. The absolute errors between the exact solution and the

ffio*imate solution are graphed for different values of x in Figures 1. This

graph has shown that the error of Legender pollmomials is up other two

iolynomials and these three lines are continuous from 0 to L The Legendre,

Lugr".r" and Hermite polynomials basis are shown the different absolute errors

have been taken statistically in the orderl0-' , l0-' and l0-8 respectively

which is very approach to zero'

4.2Example 2: Consider the second kind integral equation of the form [10]

urxt+ltx-t utt Ht=x- x2 .l--:. 0<x<r.. ........... (15)-'"' Jo 6 12'

the exact solution is u(x)=x-x2 Using Legendre, Laguene and Hermite

polynomials of the equation (16) for n:10, I get the approximate solution is

u( x ) = x - x2 , which is the exact solution. on the other hand, the absolute errors

1
l

t

I
1I
I
I
I

.J

I
1

1

l
I
1
I
t

-i
t
I
I

l
i
I
i
I

l

34



UITS Journal Volume:3 lssue: 3

were obtained in the order of l0-7 for n:10 using Sinc approximation by J.
Rashidinia & M. Zarebniafl 0]

4.3 Example 3: Consider the Volterra integral equation of the second kind of the
form [0]

4x)+
t _lf

0<x<- ..(16)2' 2

the exact solution is u(x)= I-Sin(x)

Results have been shown in Table: 2 for n:10 using the aforementioned three
polpomial bases. The absolute errors between the exact solution and the
approximate solution are graphed for different values of x in Figures 2. This
graph has shown that the error of kgender pollaomials is up other two
polynomials and these three lines are continuous from 0 to 1. The kgendre,
Laguerre and Hermite polynomials basis are shown the different absolute errors
have been taken statistically in the orderlO-e, lA-7 and 10-10 respectively
which is very close to zero. on the other hand, the absolute errors were obtained
in the order of l|-a for n:10 using Sinc approximation by J. Rashidinia & M.
Zarebnia[10]

4.4Exanryle 4: Consider the second kind Abel's integral equation [3]

Fx I . 4096-
4x) -|ft.,fi A =/ Q -#1 x), 0<x1 t ........... ( I 7)

the exact solution is, u(x)=y7 .

Using Legendre, Lagu.erre and Hermite polyromials of the equation for n:10, I
get the approximate solution isu(x)=x7.,which is the exact solution. On the

other hand, the absolute errors were obtained in the order of l0-7 for n:10 using
Bemstein polynomials by Mandal B. N. and Bhattacharya S U 11, in the order of
10-16 usrnglegendre polynomial by Rahman M. A. and Islam M. S. [3] which is
very close to the exact result.

4.5 Example 5: consider the volterra integral with a convolution kemel grven by
121

4 | +frCo6x -t jdt pt= si(x), 0<x< I ....... . . (1 8)

1x
the exact solution is. u( x ) =i sirf Jirf z 1., ,

{J

Results have been shown in Table 3 for n:10 using the aforementioned three
polynomial bases. The absolute errors between the exact solution and the
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approximate solution are graphed for different values of x in FigUres 3. This

graph has shown that the error of Laguerre polynomials is up other two

polynomials which have shown on axis line and the line of the error of Laguerre

polynomials is continuous from 0 to 1. The Legendre, Lagugrre and Hermite

polynomials basis are shown the different absolute errors have been taken

statisticallyintheorderl0-7 ,19-10 and l0-8 respectivelywhichisverycloseto

zero. On the other hand, the absolute errors were obtained in the order of l0-8
using Laplace transformation by Changqing Yang & Jianhua Hou lll
5. Conclusion

The numerical results shown that the presented method has approached of all four

linear VIE with first kind, second kind; regular kemel, weakly singular kernel and

convolution kemel by applyrng very simple and efficient Galerkin weighted

residual method using the three polynomials as trial basis for finding the

approximate solution harmony with the exact solutions. The comparative study is

that as per performance of accomplishing the numerical solution of some linear

VIE to the closeness of the exact solution of three polynomials, Laguerre

polynomial is the best polynomial of other two Hermite and Legendre

polynomials; again Hermiie pollmomial is better than Legendre polynomial.
-ri"utty I think that for finding the approximate solution of vIE by applyng

Galerkin weiglrted residual method using some polynomials as trial basis will be

widely used in mathematical application.
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Appendices

Table-1

.'
\

Value x Exact Value Error Legender Error Laguerre Error Hermite

1.0

0
0.19966683329
3656
0.3973 3866 1 59

0122
0.5910.1041332
2679
0.7788366846 1

7301
0.95885 107720
8406
1.t2928494619
007 1

1 28843537447
53 82
1 .4347 t218t79
9045
1.56665381925
4966
t.68294t96961'
5'/93

t.820478442670
497E-6
3.0r9iss750683
1.228-7

5.9827957987i 5

697E-7
2.810269545960
864F-7
5.032410402838
758-7
3.7 41724632355
669E-7
5.52861 3 1 62830
7098-7
5.7070355t5278
8478-7
5.0 I 5386694839
9l 8E-7
1.61894'7422787

8978-6
0.00001 1343184
49813

3.70'197 t88287
1419F-7
1.18487022249
2584E-7
1.19770187878
5650E-7
5.09443938 145

8926E-8
1.2070100'/ 633
112'.78-7

8.61237768265
0279F.-8
1.tt93 1009572
0749E-7
1.50679388521
97928-7
t.52268120334
7 5318-7
2.02264856641
3210F.-7
2.066t5502484
9081E-6

2.3091s3263463
378-'7
s.6808 l s012842
89E-8
8.970746762093
64E-8
2.1330648725r1
52E-7
5.289046445255
96E-8
2.977234646595
05E-7
9.678012s24716
45E-8
4.545937548616
768 -7

2.98069s3s7202
02E-8
9.473389814829
148-7

I t.zztzu,ozoszt
L 49E-6
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Value x Exact Value Error Legender Error Laguerre Error Hermite

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1

0.900i665833
5317

0.801 3306692
0493

0.7044797933
3 866

0.61 0s8 16576
9134

0.5205744613
9579

0.43s3575266
0496

0.3557823127
6230

0.2826439091
0047

0.2166730903
7251

0.15852901 5 1

9210

6.65640598196404
2E-9

5.619389953359&
E-10

r.72466885217 6s9
1E-9

1.14219855795'.738
5E-9

't .18'.762427669949
4E-9

9.23602527791445
E-10

1.301680541 13255

5E-9
3.71001 1 18715241

E-10
1.38525180215509

6E-9
2.55t01384460942

E-10
t.26034627 179194

5E-9

9.98671329632827
6E-1

4.1192'7 57 4328618
8E-7

4.248'72914628338
lE-10

3.184520t1205394
5E-7

1.90888487849871
7E-7

1.19519720676031
2E-7

2.92546309399455
rE-7

2.00824522678111
5L- I

5.885030096575 15

E-8
2.69090036364438

8E-7
2.50000646739856

3E-7

2.128596410244654
E-9

4.733987 091221081
E-10

6.004434727202579
E- l0

3.382527 5913557 tl
E-l I

4.72469785517 4M3
E-10

t.6793733070841 2E

-10
3 .t60893768949790

E- l0
3.246320989802598

E-10
7 .3605455064296t1

E-1 I

3.389355462957 155

E-10
1.4637 158152197 57

E-10

Error HermiteValue x Exact Value Error Legender Error Laguerre
0

0.09s004083352
92

0.180064002476
2t

0.2ss317291767
20

0.32098t642186
57

0.1773452034"14
90

0.424757 139289
88

0.46361 850 i000
44

0.49437347 6588
66

0.s17 s01062t7 I
50

0.533507 195 I 14

69

s.09803139675s2
428-7

1.1890559684091
258-7

1.6635678906640
I 9E-7

1.3t92777148507
41E-8

L52016361 16568

558-7
s.8803306668409

05E-9
1.5436243666622

218-7
2.1t29818450482

67F-9
1.70563214'77415

53F.-7
t.3139023236075

07F-'.l
5.3562584056976

45F-7

1.9914152327 16065E-
8

4 .8612't 237 07 597 288-
9

6.0487889974s91 98E-
9

1.29881327914915E-
l0

5.191320429087653E-
9

5.06 1 76933 70 I 14 1 E-
l0

4.69127 54',79196122E-

9

8.077 143953677538-
10

4.689407639979493E-
9

2.'.l444021499789538-
I

1.2344431921107 458 -

8

1.501 6 I 85703209
395E-7

3.612199178659'7
36E-8

4.7736134295428
556E-8

1.6 I 3998 1 01 8348

237E-9
4.2913501030472

645E-8
5.1740473017 147

79F.-10
4.2256073085056

3E-8
2.s474169995653

9958-9
4.587 4662457 645

6E-8
3.3532483012521

55E-8
1.40t3t4420057 5

3l2E-7

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
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