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A Comparative Study by Numerical Solutions of
Volterra Integral Equations Using Legendre,
Laguerre and Hermite Polynomials

Md. Mijanoor Rahman'

Abstract: In this paper, a method is presented for solving of linear Volterra
integral equations (VIE) of both first and second kind including Abel’s integral
equation by applying a very simple and efficient Galerkin weighted residual
method using Legendre, Laguerre and Hermite polynomials. Some errors of an
approximate solution are compared to the exact solution by using these
polynomials considering numerical examples of Volterra integral equations to
this paper.
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1. Introduction

Many researchers were solved numerically of some linear and nonlinear integral
equation of both first and second kinds by Mandal and Bhattacharya [11] using
Bernstein polynomials. For finding approximate solutions of Volterra integral
equations were also presented by Maleknejad et al [4] using Bernstein’s
approximation and Changqing Yang et al [1] using Laplace transform. By using
Hermite and Chebyshev Polynomials, Rahman and Islam [2] were compared to
approximate solutions of Volterra integral equations. Shahsavaran[5] obtained
numerical solution of Volterra integral equations by Collocation Method using
Block-Pulse Functions and Taylor Expansion.

Five illustrative examples of linear and nonlinear Volterra integral equations have
been solving numerically by the technique of very well-known Galerkin method
using Legendre, Laguerre and Hermite piecewise polynomials which are in the
basis trial function. Finally I have compared to errors of approximate solutions of
VIE by accuracy and efficiency.

2. The Polynomial Bases

2.1. Legendre Polynomials: The general form of the Legendre polynomials [3] of
nth degree is defined by
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—1 r (2}’1 = 27" _ n n, if nis even
= 2" (r)(n—r)(n-2r) (W)f if wis odd
(0
2.2 Laguerre Polynomials:

The general form of the Laguerre polynomials [9] of nth degree is defined by

(=L) n! ¥
L (x)= Z———n( i r)/x .......... ()

2.3 Hermite Polynomials: The general form of the Hermite polynomials [2] of nth
degree is defined by

[/ (]) "n! n=2r [n 7 if nis even
H,(x)= Z ( g H Yy Ammem 3)
(”71/)/2 if nis odd
3. The General Method:
In this section, first 1 consider the linear Volterra integral equation (VIE) of the
first kind [1]-[5], given by
IXK(x,t)u(t)dt:f(x), a<x<h i 4

where u(x) is the unknown function, to be determined, K(x,z)1s the kernel
function, continuous or discontinuous  f(x )being the known function

satisfying f(a)=0 .

Now I use the technique of Galerkin method, [12], to find an approximate
solution #(x) of (4). For this, I assume that

Ty R PN N S — Q)
i=0

where N,(x)are Legendre, Laguerre and Hermite polynomials of degree i
defined in equation (1-3), c¢; are unknown parameters, to be determined and n

is the number of piecewise polynomials. An approximate solution u#(x) will

not produce an identically zero function but a function called the residual
function. Substituting (5) into (4), I get the residual function as,

R(x)= zn:c,.j:K(x,t)N, (t)dt— f(x), a<x<b ... (6)
i=0
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Now the Galerkin equations of (4) corresponding to the approximation (5), given
by

j:R(x N (tJx=0........... 7

Using (6) and (7) after minor simplification, I obtain

n Bl ox X '
Yl U K(x,1)N, (t)dt}Nj (x)dc =[N (x)f(xpdsj=0123..n ...
i=0 a a a
®)
The above equations (8) are equivalent to the matrix form
DC =B ©)

where the elements of the matrix C,D and B are and c;,d; ; and b ; respectively,

given by

b| ex
d;; = L[LK(x,t)Ni(t)dt S(x)dx, i, j=0123,...n

b, = j:zvj ()%, = 0123, oo, (10)

Now the unknown parameters c¢; are determined by solving the system of
equations (10) and substituting these values of parameters in (5), I get the
approximate solution #( x) of the integral equation (4).

Now I consider the linear Volterra integral equation (VIE) of the second kind [1]
— [5] given by

u(x)+ﬂ.ij(x,t)u(t)dt=f(x), A<X<b o, (11)

where u(x)is the unknown function to be determined, K('x,¢)is the kernel

function, continuous or discontinuous, f'('x )being the known function and A

is the constant. Then applying the same procedure as described above, I obtain
the matrix form

DC =B  .oene (12)

where the elements of the matrix C,D and B are and c;,d; ; and b, respectively,
given by

¢ =leencsicppn c,,]T
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b| ex
d;, =LUaK(x,t N, (t )dt}Nj(x )dx, i, j = 01,2,3,.....n

b, =rNj(x)f(x)dx,j 01231 e (13)

Now the unknown parameters C,are determined by solving the system of

equations (13) and substituting these values of parameters in (5), I get the
approximate solution #(x) of the integral equation (1.

The absolute error for this formulation is defined by, Absolute
Error=|u( x)—u(x )|. The formulation for linear integral equation will be
discussed by considering numerical problems in the next section.

4. Tlustrative Examples

Here, I am giving some examples of VIE for finding the approximate solution
using above mentioned methods, which include one first kind and four second
kind linear Volterra integral equations with three regular kernels, one convolution
kernel and one weakly singular kernel.

4.1 Example 1: Consider the Volterra integral equation with a convolution kernel
of the first kind [8]

I;Cos(x —tu(t)dt = xSin(x) | 0Sx<T oo (14)

the exact solution is u(x) = 2Sin(x)

Results have been shown in Table 1for n=10 using the aforementioned three
polynomial bases. The absolute errors between the exact solution and the
approximate solution are graphed for different values of x in Figures 1. This
graph has shown that the error of Legender polynomials is up other two
polynomials and these three lines are continuous from 0 to 1. The Legendre,
Laguerre and Hermite polynomials basis are shown the different absolute errors

have been taken statistically in the order/ 07 , 107 and 1 0% respectively
which is very approach to zero.

4.2 Example 2: Consider the second kind integral equation of the form [10]

3 4
u(x)+j0(x—:)u(t)dz=x—x2 +%—i]‘5, T ST (15)

the exact solution is u( x)=x—x2 Using Legendre, Laguerre and Hermite

polynomials of the equation (16) for n=10, I get the approximate solution is
u(x)=x -x? , which is the exact solution. On the other hand, the absolute errors
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were obtained in the order of 1077 for n=10 using Sinc approximation by J.
Rashidinia & M. Zarebnia[10]

4.3 Example 3: Consider the Volterra integral equation of the second kind of the
form [10]

ux)+ ‘C‘(x—t)L(tﬂt=1—x+§’ os;csi; ......... (16)

the exact solution is u(x)=1-Sin(x)

Results have been shown in Table: 2 for n=10 using the aforementioned three
polynomial bases. The absolute errors between the exact solution and the
approximate solution are graphed for different values of x in Figures 2. This
graph has shown that the error of Legender polynomials is up other two
polynomials and these three lines are continuous from 0 to 1. The Legendre,
Laguerre and Hermite polynomials basis are shown the different absolute errors

have been taken statistically in the order /0™, 1077 and 107%° respectively
which is very close to zero. On the other hand, the absolute errors were obtained

in the order of 10~ for n=10 using Sinc approximation by J. Rashidinia & M.
Zarebnia[10]

4.4 Example 4: Consider the second kind Abel’s integral equation [3]

. 1 4096
ux)— jo ﬁu(t}ih/( — i), 0sesl . (17)

the exact solution is, #(x)= x’.
Using Legendre, Laguerre and Hermite polynomials of the equation for n=10, I
get the approximate solution isu(x)=x’., which is the exact solution. On the

other hand, the absolute errors were obtained in the order of /0~ for n=10 using
Bernstein polynomials by Mandal B. N. and Bhattacharya S [11], in the order of

-16
10 using Legendre polynomial by Rahman M. A. and Islam M. S. [3] which is
very close to the exact result.

4.5 Example 5: Consider the Volterra integral with a convolution kernel given by

[2]
ux)+ jo Cofx—tu(tdt=Sinx) 0<x<I.......... (18)

the exact solution is, u(x) = % Sin( \/gx/ 2 ).evE
3

Results have been shown in Table 3 for n=10 using the aforementioned three
polynomial bases. The absolute errors between the exact solution and the
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approximate solution are graphed for different values of x in Figures 3. This
graph has shown that the error of Laguerre polynomials is up other two
polynomials which have shown on axis line and the line of the error of Laguerre
polynomials is continuous from 0 to 1. The Legendre, Laguerre and Hermite
polynomials basis are shown the different absolute errors have been taken

statistically in the order / 07, 107 and 107® respectively which is very close to

zero. On the other hand, the absolute errors were obtained in the order of 107%
using Laplace transformation by Changqing Yang & Jianhua Hou [1]

5. Conclusion

The numerical results shown that the presented method has approached of all four
linear VIE with first kind, second kind; regular kernel, weakly singular kernel and
convolution kernel by applying very simple and efficient Galerkin weighted
residual method using the three polynomials as trial basis for finding the
approximate solution harmony with the exact solutions. The comparative study is
that as per performance of accomplishing the numerical solution of some linear
VIE to the closeness of the exact solution of three polynomials, Laguerre
polynomial is the best polynomial of other two Hermite and Legendre
polynomials; again Hermite polynomial is better than Legendre polynomial.
Finally 1 think that for finding the approximate solution of VIE by applying
Galerkin weighted residual method using some polynomials as trial basis will be
widely used in mathematical application.
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Appendices
Table-1
Value x | Exact Value Error Legender Error Laguerre | Error Hermite

00 |0 1.820478442670 | 3.70797188287 | 2.309153263463
0.19966683329 | 497E-6 1419E-7 37E-7

0.1 3656 3.019155750683 | 1.18487022249 | 5.680815012842
0.39733866159 | 122E-7 2584E-7 89E-8

0.2 0122 5.982795798775 | 1.19770187878 | 8.970746762093
0.59104041332 | 697E-7 5650E-7 64E-8

0.3 2679 2.810269545960 | 5.09443938145 | 2.133064872511
0.77883668461 | 864E-7 8926E-8 52E-7

0.4 7301 5.032410402838 | 1.20701007633 | 5.289046445255
0.95885107720 | 75E-7 1727E-7 96E-8

0.5 8406 3.741724632355 | 8.67237768265 | 2.977234646595
1.12928494679 | 669E-7 0279E-8 05E-7

0.6 0071 5.528613162830 | 1.11931009572 | 9.678012524716
1.28843537447 | T09E-7 0749E-7 45E-8

0.7 5382 5.707035515278 | 1.50679388521 | 4.545937548616
1.43471218179 | 847E-7 9792E-7 76E-7

0.8 9045 5.015386694839 | 1.52268120334 | 2.980695357202
1.56665381925 | 918E-7 7531E-7 02E-8

0.9 4966 1.618947422787 | 2.02264856641 | 9.473389814829
168294196961 | 897E-6 3210E-7 14E-7

1.0 5793 0.000011343184 | 2.06615502484 | 7.223231039521
49813 9081E-6 49E-6
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Table-2
Value x Exact Value Error Legender Error Laguerre Error Hermite
0.0 1 6.65640598196404 | 9.98671329632827 | 2.128596410244654
0.9001665833 2E-9 6E-7 E-9
0.1 5317 5.61938995335964 | 4.11927574328618 | 4.733987091221081
0.8013306692 E-10 8E-7 E-10
0.2 0493 1.72466885217659 | 4.24872914628338 | 6.004434727202579
0.7044797933 1E-9 1E-10 E-10
0.3 3866 1.14219855795738 | 3.18452011205394 | 3.382527591355711
0.6105816576 5E-9 SE-7 E-11
0.4 9134 1.18762427669949 | 1.90888487849871 | 4.724697855174043
0.5205744613 4E-9 7E-7 E-10
0.5 9579 9.23602527791445 | 1.19519720676031 | 1.67937330708412E
0.4353575266 E-10 2E-7 -10
0.6 0496 1.30168054113255 | 2.92546309399455 | 3.160893768949790
0.3557823127 5E-9 1E-7 E-10
0.7 6230 3.71001118715241 | 2.00824522678111 | 3.246320989802598
0.2826439091 E-10 3E-7 E-10
0.8 0047 1.38525180215509 | 5.88503009657515 | 7.360545506429617
0.2166730903 6E-9 E-8 E-11
0.9 7251 2.55101384460942 | 2.69090036364438 | 3.389355462957155
0.1585290151 E-10 8E-7 E-10
1.0 9210 1.26034627179194 | 2.50000646739856 | 1.463715815219757
SE-9 3E-7 E-10
Table-3
Value x Exact Value Error Legender Error Laguerre Error Hermite
0.0 0 5.0980313967552 | 1.991415232716065E- | 1.5016185703209
0.1 0.095004083352 42E-7 8 395E-7
0.2 92 1.1890559684091 | 4.861272370759728E- | 3.6121991786597
0.3 0.180064002476 25E-7 9 36E-8
0.4 21 1.6635678906640 | 6.048788997459198E- | 4.7736134295428
0.5 0.255317291767 19E-7 9 556E-8
0.6 20 1.3192777148507 1.29881327914915E- 1.6139981018348
0.7 0.320981642186 41E-8 10 237E-9
0.8 57 1.5201636116568 | 5.191320429087653E- | 4.2913501030472
0.9 0.377345203474 55E-7 9 645E-8
1.0 90 5.8803306668409 5.06176933701141E- 5.1740473017147
0.424757139289 05E-9 10 79E-10
.. 88 1.5436243666622 | 4.691275479196122E- | 4.2256073085056
0.463618501000 21E-7 9 3E-8
44 2.1129818450482 8.07714395367753E- 2.5474169995653
0.494373476588 67E-9 10 995E-9
66 1.7056321477415 | 4.689407639979493E- | 4.5874662457645
0.517501062171 53E-7 9 6E-8
50 1.3139023236075 | 2.744402149978953E- | 3.3532483012521
0.533507195114 07E-7 9 65E-8
69 5.3562584056976 | 1.234443192110745E- | 1.4013144200575
45E-7 8 312E-7
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