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Abstract

Quantum Computing is a very emerging Jield. Computing devices that we use
right now are called classical computers because they follow the laws of
classical physics. On the other hand, quantum compaters work under the luws
of quantum physics. Theoretically, Quantum computers are exponentially
faster than classical computers. An understunding of some basic features of
qudntum mechanics is mandatory for any beginner in the Jield of qaantum
computation.
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INTRODUCTION

Quantum Computiag is the art of using all the possibilities that the laws of
quantum mechanics give us to solve computational problems. Classical
Computers only use a small subset of these possibilities. In essence, they
compute in the same way that people compute by hand. As a result, the class of
problems that can be solved efficiently is the same as the class that can be solved
efficiently by hand. In Quantum Computing, calculations are performed by
unitary transformations on the state of the qubits combined with the principle of
superposition. This creates possibilities that are not available for hand
calculations, Quantum physics or quantum mechanics governs the world of
elementary particles such as electrons and photons, and it is paradoxical,
unintuitive, and radically strange.

1. BACKGROT]ND

The story of quantum computation started as early as 1982, when the physicist
Richard Feynman considered simulation of quantum-mechanical objects by
other quantum systems. Fel.nman observed that that certain quantum mechanical
effects cannot be simulated efficiently on a classical computer. This observation
led to speculation that perhaps computation in general could be done more
efficiently if it made use of these quantum effects [3]. However, the unusual
power of quantum computation was not really anticipated until 1985 when David
Deutsch of the University of Oxford published a crucial theoretical paper in
which he described a universal quantum computer [5]. But building quantum
computers, computational machines that use such quantum effects proved tricky,
and as no one was sure how to use the quanfum effects to speed up computation,
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A Brief Study on Quantum Computation

the field developed slowly. It wasn't until 1994, when Peter Shor surprised the

world by describing a polynomial time quantum algorithm for factoring integers

t6l, thai the field of quantum computing came into its own. This disco'ery

prompted a flurry of activity, both among experimentalists trying .to build

qruntu- computeis and theoreticians trying to find other quantum algorithms.

2. MOTTVATTON FOR QUANTUM COMPUTTNG

During last fifty years, manufacturing of computers has gone through

outstaiding deveiopment. The number of atoms needed to represent a bit in
memory his been dicreasing exponentially since 1950. Moreover, the number of
transisttrs per chip doubled every 18 months, towards the direction of Moore's

law. But this rate of improvement can't be sustained much longer. At the current

rate, in the year 2020, one bit of information w.ill require one atom to represent

it. At that size, the behaviour of computer's components will not be dominated

by classical physics, rather by quantum physics [1]. This physical limitation of
ciassical computer and the possiUitity that the quantum computer can perform

certain tasks more effrciently than classical computers drive the study of
quantum computing. The most fundamental building block of a classical

computer is the bit. A bit is capable of storing one piece of information; it can

have a value of either 0 or 1. h a classical computer, a bit is tlpically stored in a
silicon chip, or on a metal hard drive platter, oi on a magnetic tape. About 10i{)

atoms are typically used to store one bit of information [8]. The smallest

conceivable .iorug. for a bit involves a single elementary parlicle of some son'

For example, anypafiicle with a spin-1 12 characteristic can be characterized b1'

its spin ,ritrr", ,rLiit-, when measured is either +112 or 1/2. We can thus encode

1 to be +112 and 0 to be 112, and if we assume we can measure and manlpulate

the spin of such a particle then we could theoretically use this partlcle to stole

on. 6it of information. lf we were to try to use this spin-1'r2 particle as a

classical bit, one that is always in the 0 or 1 state. we u'ould fail. \\'e u'ould be

trying to apply classical physics on a scale where it simply is not applicable. This

singli spin 112 partrcle will instead act in a quantum manner [1]. Quantum

computers are so powerful for special feature ca11ed quantum parallelism.

Classically, the time it takes to do certain computations can be decreased b1'

using parallel processors. To achieve an exponential decrease in time requires an

expo-nential increase in the number of processors, and hence an exponentiai

increase in the amount of physical space needed. However, in quantum systems

the amount of parallelism increases exponentially with the size of the system.

Thus, an exponintial increase in parallelism requires only a linear increase in the

amount ofphysical space needed. This effect is called quantum paralielism [7]

3. AXIOMS OF QUANTUM MECHANICS
There are three basic axioms of quantum mechanics.

. superposition principle: It explains how a particle can be

superimposed between two states at the same time'

o Measurement principle: It tells us how measuring a particle changes

its state an<l how much information can be accessed by
measurement.
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o Unitary evolution: It governs how the state of the quanfum system
evolves over time.

Table 1. Differences belween Classical and

4. BRA-KET NOTATION

A special notation, named ket notation, is used to represent quanfum state. The
quantum state of a particle is represented by 1y>, which is iead as ..ket_shai',.
This notation came from the physicist piul Dirac, who wanted a concise
shorthand way of writing lbrmuras that occur in quanturn physics. These
formulas frequently took the form of the product of a row ,ectoi -ith a column
vector. He refered to row vector as "bra vector" represented as <yl and column
vector as "ket vector" represented as lx>. The product of..bra,, ani ..ket,, vector
is called "bra-ket" and represented as <ylx> [1].

5. K-LE\TL QUANTUM SYSTEM

Let's consider a system of k distinguishable states. we can think of a Hydrogen
atom. A Hydrogen atom has one electron. Let this electron be allowed to be in
one of a discrete set of energy levels, starling with the ground state, the first
excited state, the second excited state and .o &. tt *" urru-" a suitatle upper
bound on the total energy, then the electron is restricted to being in one of k
different energy levels - the ground state or one of k-r excited stat!. Now, if we
denote ground stare l0> and successive excited states ll>, l2>, l3>;,lr_l>, then
according to the superposition principle, the quantum state ofthe electron is.
Y > : rh 0> l- o.r l1> + ... + ot r ]f-l> (l)
\\'here ao, c(r, o:, .... , ttp-1 &ra complexnumbers normalized so that EI=sl i*r;: :
1. -A.ccording to Dirac's Bra-ket notation, we can write a quantum system ly> as
a ''ket" or column vector;
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Classical computer Quantum computer

1 Unit of information is called bit
or classical bit.

Unit of information is called qubit
(pronounced cue-bit). .

Before and after the
measurement, bit value is same,
i.e. when a bit is read. the value
observed is always the value
stored.

The qubit after measurement is
totally dif[erent from the qubit
before measurement.
Measurement disfurbs a quantum
state.

-l Bit stays in either 0 or I state. Qubit can be in 0, 1 or
superposition ofboth states.

I

2



A Brief Study on Quantum Computation

lY>:ool0>+o1 1>*o2 12>+...+cp-1 ]k-1 >:
i ot \
I rt \
I nt IttIJ

Then the .,bra" of the above quantum system is the conjugate transpose of the

"kef '.

< V1 : i.cti ul ui ox-rl.

Here, cry* denotes the conjugate of the complex number o,. Some exampie

quantum states are of k-3 is,

lY>= f lo, * 1t, * llzr,

I v >: !! ro> - t-i 
'l> +'*:i 2> etc.

I
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Fig. 1. The electron in Hydrogen atom can be in k different energy levels

6. HILBERT SPACE

Fig. 2. Representation of qubit states in a 2-dimensional Hilberl space

If we have a /r-level systern, then the quantum state of the system is a point on a

ft-dimensional complex vector space. This complex vector space is called Hilbert
space. As in the quantum state of (l ) all the amplitudes q are normalized to 1, all
the vectors in the Hilbefi space are of length 1. In the Hilbert space for a
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quantum systerrl each perpendicular axes represent a basis state. From our k-
level systern, the Hilbert space consists offt perpendicular axes denoted by l0>,
ll>, l2>, .. . ,lk-l> and the k-level quantum systeno is denoted by ly>. In Hilbert
space, the vector denoting the quanfum state is also called ..siate vector,,. The
basis states, which are represented by the perpendicular axes, are also called
"Eigen states". The amplitude q. in quantum state (1) is the projection of the
state vector lY> on the Eigen state vector y >. An example of a 2-dimensional
Hilbert space is shown in Fig. 2.

7. QUBrT

Qubit or quantum bit is the unit of quantum information. eubit is the 2-level
quantum system. For example, if we set I=2 at (1), the electron in the Hydrogen
atom can be in the ground state or the first excited state, or any superposition of
the two. According to the superposition principle, the quantum state oi the qubit
can be represented as,

iY >: ol0>+Bl1>
rCI r: tpl

Where o and B are complex numbers and iol2+1p1r: 1. The state vector of the
qubit is a unit vector in a 2-dimensional Hilbert space. The perpendicular axes of
the Hilbert space are basis states l0> and il>.
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Fig. 3. A qubit lY> in a 2- dimensional Hilbert Space

Fig. 4. Energy level diagram of an atom. Ground state and first excited state
correspond to qubit levels.
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According to the measurement principle, fiom a qubit lY' : o l0> + B ]1>'

we can measure J0> with probability lnl2 or, we can measure l1> with probabilit'v

lBl'.
One imporlant aspect of the measurement process is that it aiters the state (o l0>

* B lrrj of a qubit. The effect of the measurement is that the new state is exactly

theoutcomeofthemeasurement.Iftheoutcomeofthemeasurementof|Y>:cr
e, i B l1> yields l0>, then following the measurement' the qubit is in the nerl'

state l0>, (i.e. no more o, 10> + p l1;)' This implies that we can't-collect an-v

additional information about cr ut b B Uy repeating the measurement' For a singie

ilii, ; ulro p.orr"* the measurement axiom of quantum sysleTt (Measurement

disturbs the quantum state). Two examples of qubit are given below:

o Atomic Orbits

The electrons within an atom exist in quantized energy levels'

Qualitativelytheseelectronicorbitscanbethoughtofasresonating
standing waves. Two such individual levels can be isolated to configure

the basis states for a qubit [2]'

o Spins

The spin of a (spin-1/2) particle is a two-state system and can be

described Uy u q"Uit. The siin is a quantum description of the magnetic

moment of an electron which behaves like a spinning charge The trvo

allowed states can roughly be thought of as clockvise rotations 1"spin-

up') and counter clockwise rotations ("spin-down") [2]'

8. ENTANGLEMENT

Let,s consider a system of two qubits. we can think of tu"o electrons in n\lo

ftya.og.r, atoms, each regarded as a 2-state-quantum system' Since each electroll

"u, 
u"" in either of the 

"ground 
state or the excited state, ciassically the t\\'o

electrons are in one offoir possible states - 00, 01, 10 and 1 1; and represents 2

bits of classical infbrmation. By the superposition principle, the quantum State of

the two electrons can be any linear combination of these four classical states [9]'

JY>:ooo100>+sol 101 >+o16 110>+o11 ]11>,(2)

Where ooo, ctor, or0, crr t are complex numbers normalized so that Ii; ie;-; i 
: - l '

The measurement of the two qubits system reveals two bits of information' The

orobability that the outcome of the measurement is the two bit string' 'r E {00'
"Oi. iO, t it i. l,r,lr. Following the measurement the state of the two qubits is -t>.

i;ilh" ;,,"*.]* system 1)1, we can measure 101> (i'e' first qubit is 0 and

,."""a qubrt is t) wiih probability lcr4llr and after the measurement the new state"

lYn"* > : ]01>. But, what if we measure just the first qubit? What is the

proilability that the outcome is 0? The answer is simple'

Probability {1st bit: t, 
: ,ili":'ffi,roo, 

* Probabilitv {01}
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The new superposition is obtained by crossing out all those terms of ly> that are
inconsistent with the outcome of the measurement (i.e. those whose first bit is 1).

ru __ i:l,lI>-cll:1>,:-
i 0.1".: _ .fll t :

If the state of the first qubit is cr0l0 > + o,1ll > and the state of second qubit is
0ol0> + B 111> then the joint state of these two qubits is oo 0o 100> + q0 []r 101> +
o1 B6 110>+o'r pr lll>.
For example:

lY,>=ilo>+ll1>

lv,r:*io'-ilr,
Y> : ( j 10, +f f ra ff to> -* t1>)

v =+oo,--1 tc' $ .- 4
:..: :.,r Jt>+ 

=ll0>_;lll>.(3)

i ._ i J 1 .- 1=; 0, (= 0> -= l>) +: l> (+ l0> _ 

= 
ll>)

:^ {, I I
= (: u> - ; rt-x= t0> -=ll>)

--rn i-qortrrt lactor about entangled state is that the entangled state can,t be
tbcrored into ftvo indiridual qubits. But in the last example,"we can factor the
composire state into tu,o individual qubits.

N{oreo'er. if in the quantum state (3), we measure the first qubit as 0, then the
probabilitf is.

Probabilirv" {1st bit: .,::f:t:ri_:} + probabiiitv{ 01}

. 0.36
1

. Till* l*r=
I

Then, ]Y."*. > :

r-1:,,rloo>-ilot'

Here a notable point is, after measuring first qubit, we get such a new state
Yn".,) lvhere the second qubit can be still 0 or t. It proves iirat the quantum state

1-l I is not an entangled state.

\ou'. let's consider another state.

yr:=(oo>+111>)(4)
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There is no way to factor this quantum state into two individual qubits d0 0> +
o1l1> and Bol0> + plll>.

From (4), we get, uo Fo-*, oo Fr:0, o, Po:0, crl 91: +

As ao 0o 
: .* , *. ur" ,*"',nu, ao I 0 and Fo # 0

As or Pr: ;! , tn." we get, crl l0 and B1 l0

That means, all ofthe four variables are nonzero.

But o6 B1 
: 0 and or Fo 

: 0 implies that some of them must be zero. For this
inconsistency, it is proved that quanrum state (4) can't be factored into two
qubits.

Moreover, in state (4) if we measure the first qubit as 0, then

probability 
{ 1st bit: ., 

_ :::":,ity 
{oo}

I

AndlYn"*,- ='-]'-100-
\3

That means, when we measure first qubit as 0, the second qubit "automatically''
becomes 0. Similarly if we measure first qubit as I (with probability 112), then
the second qubit "automatically" becomes 1 (i.e. the new state is lY""*> : ll l>).
This is true no matter how distant the two particles are. This interesting feature is
called entanglement. It is a phenomenon which is responsible for much of the
"quantum weirdness" that makes quantum mechanics so counter-intuitive and
fascinating. From our first example of quantum system, we can say that
entangled state is not just a composite state made of two qubits. We define the
entangled state in the light ofour second example.

"Entanglement is the composite state of two qubits where individual qubit states
can not be found and the measurement of one qubit definitely affects the other
one."

9. T]NITARYEYOLUTION

Thkd axiom of quantum mechanics is unitary evolution or unitary
transformation. Unitary evolution or unitary transformation is a rigid body
rotation of the Hilbert space. By means of rotation of the Hilbert space, the
quantum state evolves over time. A unitary transformation on a 2-dimensional
Hilbert space is specified by mapping the basis states l0> and l1> to orthonormal
states lv6> : al0> + bll> and lv1> : clO> + dll>.It is specified by matrix,

,r-{e 6r
" \b ri,'

If we denote Ut as the conjugate transpose of matrix U,
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",: {:: _1"1,

Then it is verified as U Ui : UfU: I.

We give an example of unitary evolution.

Let, in the 0/1 basis, we have a qubit of state,

1w'-llor*Et=
If the Hilbert space is rotated 45" counterclockr.l,ise, the basis state ]0> will
become.

l+>: ms45= i0>+s{n*5" lr: : lOt+i ltt
And basis state l1> t,,ill become,

l-;'- sin.l5= 0) t-esc.t5. 1>:-*l0r+=11>

Fig.5. (a) Aqubit lYr:: l0>+- 1>ina2-dimensionalHilberl space.

(b) Hilberl space rotated 45,; new qubit state Uly> in +/ basis.

After rotation of the Hilbert space, the new basis states are l+> and | >. In this
+/- basis, the new state is UIY>,

I_ _1

where U: [ '.- '.' 
I

tfal

!'5 ,-/
. r 'r -T..1 i . 1 r.1_.: i

Now.UrY,,l'f .il:l-/ ''1 Il' 'f l-jl 1:.=.!lr, 
= =, 

r,-l t,-l
..1; ,:.i .:r,f .,

That means, if we rotate Hilbert .pu"., th.r, ,e can measure the qubit on a new
basis and vice versa.
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10. CONCLUSION

After Richard Feynman surprised the world by proving that computing power

can be greatly enhanced by using quantum mechanical phenomena, quantum

computei has been drawing enormous interest of the mathematicians, physicists

and iomputer scientists all over the world. For a long time, quantum computer

was a theoretical computer. But in 2011, a Canadian electronics company D-

wave Inc. an,ounced ihe release of world's first quantum computer. Quantum

computer is no more an imagination. Already some quantum algorithms like

Shoi's integer factorization algorithm and Grover's database search algorithm

have been 
"proved 

to be more efficient than the related best known classical

algorithms.\ou,,, hundreds of researches are going on in both of the fields of
colnstruction of powerful quantum computer and the development of quantum

algorithms. To understan<l these sophisticated algorithms and to commence any

tfie of research in quantum computing, the topics of quantum mechanics

discussed in this paper tnust be properly realized.
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