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ABSTRACT: In some studies of physics and applied mathematics, there 

arise large size of matrices and calculating determinants of those 

matrices are very complex. In this case we can partition on such 

matrices into some blocks. After partitioning, the new matrix which 

elements are those partitions is a block matrix. In this article, we have 

studied and explored some formulae to compute the determinant of 

block matrices. We have curbed our absorption in 22 block matrices, 

where each blocks are any nm
 
size, where nm, . 

Keywords: Block matrix, Block diagonal matrix, Schur complement, 

Determinant. 

1. INTRODUCTION 

Block matrices appear frequently in physics and applied mathematics [1-

5]. Among those some of the determinants of these matrices are very 

large, for example, a model of high density quark matter must include 

color (3), flavor (2-6), and Dirac (4) indices, giving rise to a matrix 

between size 24× 24 and 72 ×72. In this case, calculating determinants of 

those matrices are very complex such as computational time and 

technique. But, we can calculate the determinant easily if we partition 

these matrices into some blocks. Silvester [6] has calculated the 

determinant of mm  block matrices. Block matrices also have been 

studied by Molinari and Popescu [9, 10]. In this work we have studied and 

investigated some properties of 2×2 block matrices. These properties of 

2×2 block matrices can help to calculate the determinant of any large sizes 

matrices. 

The paper is organized as follows. In section 2 we have discussed about 

basic definitions and notations which are used throughout this paper. In 

section 3, we have studied and investigated some formulae to compute the 

determinant of 2×2 block matrices with an example. 
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2. PRELIMINARIES 

Definition 2.1: [7] A block matrix (also called partitioned matrix) is a 

matrix of the kind 

                                                         










ED

CB
A  

Where DCB ,,  and E  are also matrices, called blocks. Basically, a block 

matrix is obtained by cutting a matrix two times: one vertically and one 

horizontally. Each of the four resulting pieces is a block. 

Example 2.1 (a): We consider the matrix 

                                                



















321

752

313

A                 

We can partition it into four blocks as 

                                                





















321

752

313









A
 

By taking   

                              
,

52

13








B

  
,

7

3








C

  
 ,31D

 
 3E

 

The above matrix can be written as
 

                                                










ED

CB
A

 

Definition 2.2: [7] Block matrices whose off-diagonal blocks are all equal 

to zero are called block-diagonal. The matrix 









E

B
A

0

0

 
is a block 

diagonal where 0  is a zero matrix. 

Definition 2.3: [7] Let 









dc

ba
A  where dcba ,,, are numbers, then the 

determinant of A is .bcad
dc

ba
A   



UITS Journal of Science & Engineering  Volume: 7, Issue: 1 

 

7  

3. DETERMINANTS OF BLOCK MATRICES  

Proposition 3.1: Let 









E

B
A

0

0

 
be a block diagonal matrix, where B    

and E are of any nn  and mm size where Nnmnm  ,;   and 0 is 

zero matrix, then .
0

0
EB

E

B
A          

Proof: Let  I   be a  nn    matrix. Then  

                                


























E

I

I

B

E

B n

m 0

0

0

0

0

0

 

Now by the product formula, we have 

                                       E

I

I

B

E

B n

m 0

0

0

0

0

0


 

                                                 EB                

Proposition 3.2: Let 









ED

CB
A

 
be a block matrix, if 0C , or 0D  

that is 









ED

B
A

0
 or 










E

CB
A

0
 , then

    E

CB
EB

ED

B

0

0


    

Proof: Trivial 

Proposition 3.3: Let 









ED

CB
A

 
be a block matrix, if 0A  or 0E  

and C , or D  is square but not of same size, then  

                                   0

0

D

CB
CD

ED

C


                            

Proof: Trivial
 

Proposition 3.4: Let 









ED

CB
A

 
be a block matrix, if 0A  or 0E  

and C , or D  is square and of same size, then  

                                   0

0

D

CB
CD

ED

C


     

Proof: Trivial
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Definition 3.5: [8] If 









ED

CB
A , then ,1CDBESB

  

,1BECDSC


 
,1FBECSD

 ,1DCEBSE


 
are called the Schur 

complement of DCB ,,  and E  respectively. 

Theorem 3.6: Let 









ED

CB
A

 
be a block matrix, where the block, 

DCB ,,  and E  are of any nm size where ., Nnm   If B  is non-singular 

then BSBA  , where BS  is the Schur complement of B  and also if B  

and E  are of same size then DCBEA  , if DBBD  ; and 

DCEBA  , if CBBC  . 

Proof: Suppose 









ED

CB
A  and B  is non-singular. 

Therefore, 



























  CDBE

CB

ED

CB

IDB

I
11 0

0
 

                          CDBEBAI 1  

           Thus BSBCDBEBA  1

                                
(3.1) 

                                                
CBDBBE 1   

If B  and E  are of same size. 
  

                            
DCBE   if DBBD                              (3.2)

 

Again we can write (3.1) as BCDBEA 1  

                                                
CBDBEB 1

 
 If B  and E  are of same size. 

  

                                                  
DCBE   if CBBC        (3.3)

 

Theorem 3.7: Let 









ED

CB
A be a block matrix, where the block, 

DCB ,,  and E  are of any nm size where ., Nnm    
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If C  is non-singular and also if C and D are not of same size then 

CSCA  , where CS is the Schur complement of C , again if C  and D  

are of same size then CSCA   and CDEBA   if ;ECCE   

also DCEBA   if .CBBC   

Proof: Suppose 









ED

CB
A  and C  is non-singular. 

Therefore, 



























  0

0
11 BECD

CB

ED

CB

IEC

I
                 (3.4) 

If C  and D  are not of same size then we obtain 

                             
CBECDAI 1  

                           Thus CSCBECDCA  1

                 
(3.5) 

Now from (3.4) if C  and D  are of same size then we obtain  

                          
CBECDAI 1

 

                   Thus CSCBECDCA  1

                     
(3.6) 

                              
CDBCEC  1   

  

                              
CDEB   if ECCE                               (3.7)

 

Again we can write (3.5) as CBECDA 1  

                                                
DCBCEC  1  

 

                                                    
DCEB   if CBBC         (3.8)                                 

Theorem 3.8: Let 









ED

CB
A be a block matrix, where the block, 

DCB ,,  and E  are of any nm size where ., Nnm   If DCB ,,  and E  

are of all square matrices, then DCBEA   if ; ;DBBD   

DCEBA   if CBBC  ; CDEBA   if ;ECCE  CDBEA   

if .EDDE   

Proof: Trivial
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Example 3.9: Let 






























250000

120000

201000

134123

649543

654011

A
 
be a 66 order matrix. 

Now for computing determinant of  A
 
we can partition this matrix as 

follows.  

Let 



















123

543

011

B , 



















134

649

654

C , 



















000

000

000

D  and 















 



250

120

201

E . 

Therefore, 616
0

 EB
E

CB
A  

4. CONCLUSIONS 

A block matrix or a partitioned matrix is a partition of a matrix into 

rectangular smaller matrices called blocks. Block matrices emerge often in 

modern applications of linear algebra and it is not very difficult to 

compute the determinant of those block matrices. But it is important, how 

to implement the algorithms to compute the determinant of the block 

matrices. In this article, we tough on a few thoughts and apparatus for 

computing the determinant of block matrix. Particularly, we have proved 

several propositions for computing determinant of 22    block matrices. 

Also by using the Schur complement, some theorems for computing 

determinant of 22  block matrices have been proved. This work will be 

helpful to readers as well as researchers to calculate determinant of any 

large sizes of matrices.  
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